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Abstract

There exist several applications in image processing (eg: video compressed sensing [9]

and color image demosaicing) which require separation of constituent images given mea-

surements in the form of a coded superposition of those images. Physically practical

code patterns in these applications are non-negative and do not obey the nice coherence

properties of other patterns such as Gaussian codes, which can adversely affect recon-

struction performance. The contribution of this work is to design code patterns for video

compressed sensing and demosaicing by minimizing the mutual coherence given a fixed

dictionary. Our method explicitly takes into account the special structure of those code

patterns as required by these applications: (1) non-negativity, (2) block-diagonal nature,

and (3) circular shifting. In particular, the last property enables for accurate patch-wise

reconstruction.

We then deviate from the coded source separation scenario and explore sparsity mea-

sures other than the l0 norm that yield quantities upper-bounding reconstruction error

that are easier to calculate than the ominous RIC bound, and are tighter than the ubiq-

uitous coherence bound. We aim to optimize these quantities as functions of the sensing

matrix to improve performance.

Keywords – video compressed sensing, source separation, sensing matrices, overlapping

patch-wise reconstruction, coherence, optimization, gradient descent, sparsity measures
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Chapter 1

Introduction

C
ompressed sensing has been explored as an alternative (usually, faster) way of

sampling continuous-time signals. Its success with still images has inspired efforts

to apply it to video.

A system implementing compression across time was presented in [9]. The recon-

struction framework here, however, forces on the inherent scene a time-smoothness as-

sumption and hence cannot well-model sharp changes like occlusions or lighting effects.

Other techniques like [15] exploit additional structure within the signal, like periodicity,

rigid motion or analytical motion models and cannot be used in the general video sens-

ing case. We try relaxing these constraints using a source-separation approach to the

problem.

Next, we aim to design such sensing matrices with low mutual coherence, making

them ideal for compressed video. Most current approaches to this problem have their

limitations: the method in [5], for instance, involves a step that requires a Cholesky-

type decomposition of a ‘reduced’ Gram matrix, and the non-linear reduction process is

not guaranteed to keep the Gram matrix positive-semidefinite. Besides, the methods in

both [4, 5, 12] optimize objective functions that are some forms of average of normalized

dot products of effective dictionary columns, and minimizing averages doesn’t guarantee

minimizing the maximum (which is coherence in this case) of the quantities forming this

average. Other than these, some authors have taken an information-theoretic route to

this problem [3, 13, 16]. These papers design sensing matrices Φ such that the mutual

information between a set of small patches {Xi}ni=1 and their corresponding projections

{Yi}ni=1 where Yi = ΦXi, is maximized. Computing this mutual information first requires
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estimation of the probability density function of X and Y using Gaussian mixture models,

for instance. This can be expensive and is an iterative process. Moreover these learned

GMMs for a class of patches may not be general enough. Besides, the literature cited so

far does not account for the special (positive diagonal) structure of the sensing matrices

used for video compressed sensing as in [9] or for demosaicing, a framework which this

paper expressly deals with.

There are obvious applications for this in the fields of fast video sensing and in im-

proving multi-spectral imaging and image demosaicing. Besides, this will find applications

in the general problem of coded source separation where inputs are coded linear combi-

nations of images sparse in some domain and need to be solved for in a source-separation

framework.

Further, we go on to find measures of the ‘goodness’ of a sensing matrix ‘tighter’ than

coherence, and try optimizing general sensing matrices in the framework constructed by

these measures. As we will see, some of these measures change the basic meaning, from

the l0 norm of the sparsity of a signal, to one that follows some ‘axioms’ one might

expect a sparsity measure to follow. We speculate that using one of such measures, error

bounds different in nature to and more easily computable than the best current (and

hard-to-compute) bounds might be obtained.

The rest of this report is organized as follows:

1. Preliminaries reviews the basics of compressed sensing, from the qualitative idea

to theoretical guarantees and introduces the source separation problem.

2. Coded Source Separation for Compressed Video reviews some past work in

using compressed sensing for video data and motivates and describes our proposed

framework.

3. Sensing Matrix Optimization for Compressed Video introduces our methods

for optimizing sensing matrices, specialized for our coded source separation frame-

work.

4. Optimizing General Matrices moves on to describe some techniques to optimize

sensing matrices based on new sparsity measure definitions.
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5. Experiments and Results summarizes results from our reconstruction and opti-

mization schemes.

6. Conclusion and Future Work briefs upon the take-aways from this work and on

future work in this area.
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Chapter 2

Preliminaries

T
his chapter introduces some basic concepts from compressed sensing and source

separation that will crop up throughout this work. I have tried to keep the

material as self-contained as possible.

2.1 Compressed Sensing

2.1.1 Motivation

One of the fundamental and preliminary problems in the typical signal processing pipeline

is the discrete representation of continuous-time signals. A general continuous-time signal

has infinite degrees of freedom – at each point on the domain of the function, we are free

to choose any value in the range of the function. A discrete representation, therefore,

does not preserve all the information in the signal. However, we cannot use continuous

information – such a representation would take up infinite space and computation time.

However, most signals we find in everyday life aren’t completely random. There

is often an underlying structure to them, and we don’t need all the infinite degrees to

represent the signal. For instance, a fundamental result, the Nyquist-Shannon sampling

theorem, says that if the signal is band-limited (limited in frequency in the spectral

domain), a discrete representation spaced at half the minimum period in the spectrum

of the signal uniquely determines the signal. For a general band-limited signal, it can be

shown that we can’t do any better.

Natural signals, however, have more structure than band-limitedness. Natural im-
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Figure 2.1: Example image for the sparsity analysis in Fig. 2.2

ages, for instance, are known to be sparse in spectral domains like the discrete Fourier

and cosine transforms. Among the (bounded) set of frequencies in these signals, only few

have any significant contribution to the signal energy. The image in Fig. 2.1, for instance,

has a DCT spectrum shown in Fig. 2.2. Note that among the 4× 104 coefficients plotted,

only a few are non-zero.

This seems to suggest that we can get away by sensing only those components that

contribute any significant energy and still achieve a good representation of these signals

and thus, beat the sampling theorem by exploiting structure.

2.1.2 General framework

We, then, must equip ourselves to sample only some coefficients of that spectral domain

that sparsifies a given signal. Since the spectral transforms are linear functions of the

input signal, it is sufficient to consider linear combinations of signal elements.

Thus, our general sensing framework, for obtaining the measurement y from the

inherent signal x, given a sensing matrix (that dictates the above linear combinations) Φ

is

y = Φx (2.1)

The φ here is a short, fat matrix because the number of elements in y is less than

the number of elements in x – we have a compressive measurement. Now, if the (general)
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Figure 2.2: Plot of DCT coefficients for the image in Fig. 2.1

basis ψ sparsifies the signal x, we write

y = ΦΨc = Ac (2.2)

where c is the vector of coefficients of the signal x in the basis Ψ.

2.1.3 Reconstruction methods

The goal, then, is to reconstruct the signal x (equivalently, c) from the compressive

measurement y. We formulate the problem as follows: we want the ‘sparsest’ (in Ψ)

x that satisfies the measurement equation. The definition of sparsity in this context is

usually taken to be the l0 norm of the vector x.

Thus the optimization problem that faces us is

min
c
‖c‖0 such that y = Ac (2.3)

This optimization problem, however, can be shown [6] to be combinatorial in c –

there’s no polynomial time solution to this problem. However, greedy methods can be

used to select the support of the vector c and then estimate the coefficients in the support.
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Examples of such methods are matching pursuit [Alg. 1] and orthogonal matching pursuit

[Alg. 2] [1] These algorithms are summarized in brief for reference:

Data: Signal: Y(x), dictionary D

Result: List of coefficients: (an, fn(x)).

Initialization

R1(x) ← Y(x)

n ← 1;

while ‖Rn(x)‖ < threshold do

fn(x)← arg maxfi(x)∈D ‖Rn(x)− fi(x)‖

an ← ‖Rn(x)− fi(x)‖

Rn+1(x)← Rn(x)− anfn(x)

n← n+ 1

end

Algorithm 1: Matching Pursuit

Data: Signal: Y(x), dictionary D

Result: List of coefficients: (an, fn(x)).

Initialization

R1(x) ← Y(x)

n ← 1;

S ← Φ

while ‖Rn(x)‖ < threshold do

fn(x)← arg maxfi(x)∈D ‖Rn(x)− fi(x)‖ S = S ∪ fn(x)

a← arg minw∈Rk ‖Y(x)−
∑

fi(x)∈S wifi(x)‖

Rn+1(x)← Y(x)−
∑
anfn(x)

n← n+ 1

end

Algorithm 2: Orthogonal Matching Pursuit

Often, the recovery problem is often relaxed to an lp norm optimization problem:

min
c
‖c‖p such that y = Ac (2.4)

A common choice for p in the above is 1, because that convexifies the problem while

still promoting sparsity. The optimization problem with p = 1 is known as basis pursuit.
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The noisy case can be handled in a similar manner, by changing the constraint:

min
c
‖c‖p such that ‖y − Ac‖2 ≤ ε (2.5)

2.1.4 Theoretical guarantees

l0 optimization

Suppose we found some method of performing the minimization in Eq. 2.3. Under what

conditions would an s-sparse vector c be accurately recovered by solving Eq. 2.3?

To answer this, assume that y = Ac1. Now, for any c2 that is s-sparse, c1 − c2

is 2s-sparse. Therefore, if y = Ac2, we must have A(c1 − c2) = 0. If c1 is to be the

unique solution to Eq. 2.3, we must have c1 = c2, and therefore, cannot have any linearly-

dependent subset of 2s columns in A. This can be extended to the noisy case [6].

l1 optimization

A number of properties of the sensing matrix have been used [6] to derive reconstruction

error bounds on the matrix A. We mention a couple of these that will be useful further.

Let us assume, for the purposes of this section, that the k × N matrix A has l2-

normalized columns. Then, the coherence µ of the matrix A is defined as

µ = min
1≤i 6=j≤N

〈ai, aj〉 (2.6)

Further, the sth restricted isometry constant δs of the matrix A is defined as

δs(A) = max
S∈{1,..,N}, card(S)≤s

λmax
(
ATSAS − I

)
(2.7)

where AS is the restriction of the columns of the matrix A to the subset S of the set [N ]

of numbers from 1 to N .

It can be shown [6] that if the 2sth restricted isometry constant δ2s ≤ 4/
√

41, then

the solution c∗ of 2.4 with p = 1 approximates the inherent, nearly s-sparse c within an

error bound determined by δ2s:

‖c− c∗‖1 ≤ Lc# +M
√
sε (2.8)

‖c− c∗‖2 ≤
L√
s
c# +Mε (2.9)
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where c# is the restriction of c to the largest (in magnitude) s entries of c. L and M are

increasing functions of the RIC. This points to the fact that one way of minimizing the

reconstruction error for s-sparse signals is to minimize the 2sth RIC. The RIC calculation,

however, involves a combinatorial optimization over the subset S of the set [N ], and cannot

be calculated in polynomial time – and is therefore difficult to optimize.

However, it can be shown that

δ2s(A) ≤ (s− 1)µ(A) (2.10)

and therefore, a looser, but easier way to reduce errors is to minimize the coherence µ of

A. We will find applications of this later.

2.2 Source Separation

Source separation is a classic problem in signal processing. It comes in two flavors: one in

which both the nature of the signals and the mixing process is unknown (also referred to

as blind source separation), and the easier case where the signals are still unknown but

the mixing model is known. In the compressed sensing, we precisely control the sensing

framework – so when (if) we use source separation in compressed sensing, the relevant

paradigm is the second, easier one.

2.2.1 The framework

We consider the case in which two sources are combined in some (known) model, with

the possible addition of bounded noise. In this case, the measurement model [14] is

z = Ax+Be+ n (2.11)

where A and B are general deterministic dictionaries. For convenience, we assume that

they are l2-normalized in their columns. The vectors x and e are assumed to be sparse

(we have a bit of leeway here: the source x can be approximately sparse as well). The

noise n needs no constraint other than ‖n‖ ≤ ε, allowing arbitrary bounded noise models.

10



2.2.2 Theoretical guarantees

Under the assumptions of Eq. 2.11, [14] proves the following about recovery of the vector

w = [xT eT ]: if ‖n‖2 ≤ ε, µb < µa and

‖w‖0 = ‖x‖0 + ‖e‖0 < max

{
2(1 + µa)

µa + 2µd +
√
µ2
a + µ2

m

,
1 + µd

2µd

}
(2.12)

where µa and µb are the coherences of the individual dictionaries A and B, µm is the

cross-coherence of A and B by taking pairs of columns, one from A and one from B, and

µd is the coherence of the joint dictionary [A B], then the solution w∗ to the basis pursuit

problem formed by this measurement model satisfies, in relation to the true w,

‖w − w∗‖2 ≤ C(ε+ η) +D‖w − wW‖1 (2.13)

where wW is w restricted to the top ‖w‖0 elements and C and D are non-negative con-

stants. It is this theoretical guarantee that our sensing and recovery framework rely upon

for coded source separation.
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Chapter 3

Coded Source Separation for

Compressed Video

W
e now look at how compressed sensing principles may be used for video data.

In practical situations, it is easier to combine video frames across time than to

combine frames across both space and time, which would have been superior. However, we

find that the right linear combination of video frames gives good reconstruction results.

Our final aim is to develop a framework and a set of codes that provide for optimal

reconstruction on video data compressed across time.

3.1 Previous work

Linear coded combinations of input frames were exploited in implementation in [9], where

T vectorized input frames {Xi}Ti=1 are sensed so that the vectorized output Y appears as

a coded combination (dictated by the ‘sensing matrices’ φi) of the inputs. The sensing

framework (depicted in Fig. 3.1) is

Y =
T∑
i=1

φiXi (3.1)

Since the output of this operation is a coded combination, this sensing framework

constrains the φ1 to be a diagonal matrix, with the code elements on the diagonal.

The sparsifying basis here is a 3D dictionary learned on video patches. Given this

dictionary, called D, any given signal X, and in particular, its frames {Xi}Ti=1 can be

13



Figure 3.1: Measurement Model

approximately reconstructed as a sum of its projections αj on the K atoms in D:

Xi =
K∑
j=1

Djiαj (3.2)

where Dji is the ith frame in the jth 3-D dictionary atom Dji. From the measurements and

the dictionary, the input images are recovered solving the following optimization problem:

min
α
‖α‖0 subject to

∥∥∥∥∥Y −
T∑
i=1

φi

K∑
j=1

Djiαj

∥∥∥∥∥
2

≤ ε (3.3)

This problem can be approximately solved with sparse recovery techniques like orthogonal

matching pursuit [1].

The drawback here, though, is that the 3D dictionary imposes a smoothness as-

sumption on the scene. Since a linear combination of dictionary atoms cannot ‘speed’

an atom up, the typical speeds of objects moving in the video must be roughly the same

as the dictionary. Also, because of the nature of the training data, the dictionary fails

to sparsely represent sudden scene changes caused by, say, lighting or occlusion. Other

techniques like [15] exploit additional structure within the signal, like periodicity, rigid

motion or analytical motion models and cannot be used in the general video sensing case.

3.2 Our approach

We try relaxing these constraints using a source-separation approach [14], where precise

error bounds on the recovery of the images have been derived, with possible improvement

14



using the techniques in [2]. Each of the coded snapshots is treated as a mixture of

sources, each sparse in some basis. We experimented with basis pursuit recovery with

Gaussian-random sensing matrices, getting excellent results with no visible ghosting for

both similar and radically different images. Unfortunately, the more realizable positive

sensing matrices do not have the nice incoherence properties of Gaussian-random matrices,

which are sufficient conditions for near-accurate recovery as derived in [14].

We propose to use a recovery method different from the one used in [9], within the

same acquisition framework. Thus, our signals are still acquired according to Eq. 3.1.

However, the choice of the sparsifying basis is different: we use a DCT basis D to model

each frame in the input data. The dictionary Ψ sparsifying the entire video sequence,

thus, is a block-diagonal matrix with the n×n sparsifying basis D on the diagonal. Thus,

Y =
(
φ1 . . . φT

)(
Dα1 . . . DαT

)T
(3.4)

=
(
φ1D . . . φTD

)(
α1 . . . αT

)T
(3.5)

Given a measurement Y , we recover the input {Xi}Ti=1 through the DCT coefficients α

by solving the optimization problem

min
α
‖α‖1 subject to Y = ΦΨα, α =

(
α1 α2 . . . αT

)T
(3.6)

In our implementation we used the CVX [7] solver for solving the convex optimization

problem in Eq. 3.6.
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Chapter 4

Sensing Matrix Optimization for

Compressed Video

A
s seen in Chapter 2, (tractable) compressed sensing recovery using the l1 norm

succeeds only under certain conditions on the matrix φ and the sparsifying basis

ψ. It has been shown [14] that if the sparsity of a signal in a basis, given by the l0 norm

of its coefficient vector α in the dictionary D = φψ with coherence µ(D) satisfies

‖α‖0 ≤
1

2

(
1 +

1

µ(D)

)
(4.1)

and the compressed measurement yields Y , then the optimization problem

min
α
‖α‖1 subject to Y = φψα (4.2)

necessarily yields the true coefficient vector α.

Clearly, the guarantee on recovery would apply to ‘more’ signals (greater allowed

values of ‖α‖0, so less sparse signals are allowed) if the value of µ(D) is small. Most

approaches to sensing matrix optimization, thus, focus on finding a sensing matrix (and

sometimes, jointly finding a sensing matrix and sparsifying basis) such that µ(D) is min-

imized.

Given a sparsifying basis ψ, then, it is necessary to construct an ‘optimal’ sensing

matrix. Most previous work and our first method do this in terms of µ(D).
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4.1 Previous work

4.1.1 Minimization via the Gram matrix

One way to look at the coherence is [5] to look at the absolute maximum non–diagonal

element of G = DTD. The goal is to reduce the magnitudes of the non–diagonal elements.

[5] tries to minimize the following function, with a parameter t:

µt(D) =

∑
i 6=j (|gij| > t) |gij|∑
i 6=j (|gij| > t)

(4.3)

This is an absolute average of off–diagonal Gram matrix entries above t. To achieve this,

[5] processes the entries of the Gram matrix by a ‘shrinking’ function Fig. 4.1, forces the

shrunk Gram matrix to be low–rank to get a ‘new’ Gram matrix, and builds the square

root of the this matrix to obtain the updated dictionary.

However, this method gives no guarantees on whether the actual maximum value

decreases or not (notice the method minimizes the average value of off–diagonal elements

above t). Also, the square–root step involves an assumption that the input matrix is

positive semi–definite, which is not always the case. When it is not, one needs to force

the offending eigenvalues to zero. Guarantees on whether coherence decreases across these

iterations don’t exist.

4.1.2 Minimization via rank–1 approximation

An equivalent way to look at the problem is making the columns of D as ‘orthogonal’

to each other as possible. This implies that the Gram matrix G should be as close to

the identity matrix as possible. [4] solves the problem of estimating φ given ψ this way

([4] also solves the problem of estimating both jointly from sample signals, but that is

not applicable in the general video scenario). Knowing that we need G = ψTφTφψ ≈ I,

ψψTφTφψψT ≈ ψψT . With ψψT = V ΛV T and φV = Γ, we need ΛΓTΓΛ ≈ Λ. So we

solve

min
Γ

∥∥ΛΓTΓΛ− Λ
∥∥
F

(4.4)

This can be written as

min
Γ

∥∥∥∥∥Λ−
∑
i

νiν
T
i

∥∥∥∥∥
F

= min
Γ

∥∥∥∥∥Λ−
∑
i,i 6=j

νiν
T
i − νjνTj

∥∥∥∥∥
F

(4.5)
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Figure 4.1: Shrinking function in [5]
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where νi is the ith column of ΛΓT . This, however, is a rank–1 approximation problem which

can be solved non–iteratively with the singular value decomposition of Λ −
∑

i,i 6=j νiν
T
i .

We do this by initializing ΛΓT to a random matrix and successively optimizing for all j.

This in turn yields Γ, and therefore φ.

Again, however, this method minimizes some appropriate average of the Gram matrix

elements and therefore isn’t guarenteed to minimize the maximum of off-diagonal entries.

4.2 Our approach for video compressed sensing

4.2.1 Track I: Direct coherence minimization

Our aim here is to optimize the sensing matrices φi directly for minimum coherence with

gradient descent. We now calculate gradients of the coherence with respect to the elements

of φi. As in Eq. 3.5, with an n× n dictionary D, we have the effective dictionary

ΦΨ =
(
φ1D φ2D . . . φTD

)
(4.6)

The expression for the coherence of a general dictionary 2.6 contains max and abs functions

that a gradient-based scheme cannot handle. Instead, we soften the max and convert the

abs to a square by using, for large enough θ,

max
i
{t2i }ni=1 ≈

1

θ
log

n∑
i=1

eθt
2
i (4.7)

We need to evaluate the coherence of this dictionary as a function of the elements

of Φ. We will call the index varying from 1 to T as µ or ν, and the index varying from

1 to n as α, β or γ. The µth block of Φ is thus φµ. Let the βth diagonal element of φµ

be φµβ. Define the αth column of DT to be dα. Then, it can be shown [Appendix A] that

the normalized dot product between the βth column of the µth block and the γth column

of the νth block is

Mµν(βγ) =

∑n
α=1 φµαφναdα(β)dα(γ)√(∑n

α=1 φ
2
µαd

2
α(β)

)
(
∑n

τ=1 φ
2
ντd

2
τ (γ))

(4.8)

Finally, using the squared soft-max function [Eq. 4.7] to deal with the max and the

abs in the coherence expression, we get the squared soft coherence C to be

C =
1

θ
log

[
T∑
µ=1

µ−1∑
ν=1

n∑
β=1

n∑
γ=1

eθM
2
µν(βγ) +

T∑
µ=1

n∑
β=1

β−1∑
γ=1

eθM
2
µµ(βγ)

]
(4.9)
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In the above, the first term corresponds to all (µ > ν) blocks that are ‘below’ the

block diagonal. Here, we consider all terms in the given block for the maximum. The

second term corresponds to (µ = ν) blocks on the block diagonal. Here, we consider only

consider (β > γ) below-diagonal elements for the maximum.

Calculation of coherence derivatives

We note that the C computed in the section above is a function of Φ. We differentiate C

with respect to φδε. For this, we define the numerator of the expression for Mµν(βγ) as

χµν(βγ) and the denominator as ξµν(βγ). The derivative of the objective function can be

found in terms of these quantities. Defining ↑µδ to be the Kronecker delta function that

is 1 only if µ = δ, it can be shown [Appendix B]

dχµν(βγ)

dφδε
= dε(β)dε(γ) (φµε ↑νδ + ↑µδ φνε) (4.10)

dξµν(βγ)

dφδε
=

1

ξµν(βγ)

[
φµεd

2
ε(β) ↑µδ

n∑
τ=1

φ2
ντd

2
τ (γ) + φνεd

2
ε(γ) ↑νδ

n∑
α=1

φ2
µαd

2
α(β)

]
(4.11)

Using these, we do gradient descent with adaptive step-size and use a multi-start

strategy to combat the non-convexity of the problem.

Time complexity and the need for something more

The calculation of coherence for a matrix requires us to evaluate normalized dot products

between columns of the matrix. In our case, the size of the matrix is n × nT , and each

dot product needs O(n) operations, warranting the calculation of O(n3T 2) quantities.

Optimizing this rapidly becomes intractable as n increases. The performance of gradient

descent on this non-convex optimization problem also worsens as the dimensionality of

the search-space (O(nT )) increases.

Empirically, we observe that it is intractable to design codes that are more than

20 × 20 in size in any reasonable time. This points to the fact that we need something

more to make designing effective codes possible.

4.2.2 Track II: Including circular shifts

The computational intractability of optimizing large codes leads us to designing smaller

masks and tiling them to fit the image size we’re dealing with. A small coherence for
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Figure 4.2: Motivation behind circularly-shifted optimization

the designed patch guarantees good reconstruction for patches exactly aligned with the

code block; however, other patches see a code that is a circular shift of the original code.

Fig 4.2 provides a visual explanation. The big outer square denotes the image. On top of

the image we show tiled designed codes. Now, the patch in red clearly multiplies with the

exact designed code; however the patch in green multiplies with a code shifted in both

the coordinates circularly.

This points to designing sensing matrices that have small coherence in all their

circular permutations (note that these permutations happen in two dimensions and must

be handled as such). To this end, we modify the above objective function to minimize

the maximum coherence resulting from all circularly-shifted vectorized versions of Φ. We

thus have

C =
1

θ
log

 ∑
ζ∈perm(Φ)

[
T∑
µ=1

µ−1∑
ν=1

n∑
β=1

n∑
γ=1

eθM
(ζ)2
µν (βγ) +

T∑
µ=1

n∑
β=1

β−1∑
γ=1

eθM
(ζ)2
µµ (βγ)

] (4.12)

where M
(ζ)
µν (βγ) represents the normalized dot product between the βth column of the

µth block and the γth column of the νth block, resulting from the instance of the circular

permutation ζ of Φ. Derivatives of this expression are found exactly like in Appendix B,

except that the µ, ν, β and γ parameters are subjected to the appropriate circular per-

mutation.

The time complexity for determining this maximum coherence among all circular

permutations is O(n5T 2), out of which a O(n3T 2) term arises from the calculation of

coherence for each circular permutation, and a O(n2) arises from the fact that there are
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n2 such permutations. The advantage here, though, is that we don’t need to optimize

masks having very high values of n; we can do away with keeping n a small constant

because the scheme works for any n such that n-sized patches are sparse in the dictionary

D. This scheme is, thus, more scalable in terms of the size of the input image. Therefore

the effective dimension of the optimization problem in such a scheme is, in terms of the

variables that matter, O(T 2).

It is worth mentioning that this simple idea has been largely ignored in literature

concerning sensing matrix optimization. As mentioned in the introduction, previous at-

tempts mostly use an average coherence minimization technique [4, 5, 12] for full-sized

sensing matrices, and are not as scalable as ours is for large images because they involve

optimization problems in variables whose dimensions are at least of the order of image

size. Sensing matrices can be designed at the patch level as well, for instance using infor-

mation theoretic techniques as in [3, 13, 16], but the methods therein are not designed to

account for the issue of overlapping reconstruction. To the best of our knowledge, ours is

the first piece of work to handle this important issue in a principled manner.

4.2.3 Track III: Optimizing bounds tighter than coherence

The coherence bound mentioned in Eq. 2.10 is a very pessimistic bound: it arises from

applying Gershgorin’s circle theorem – that bounds the eigenvalues of a matrix in terms

of their distance from diagonal elements – to the definition of the RIC as in Eq. 2.7

and approximating the maximum column sum as (s − 1) times the maximum element

constituting the sum [6].

Gershgorin radii

Instead, we can try to minimize the maximum Gershgorin radius, achieving a tighter

bound than coherence on the RIC. F weor our framework, then, do the following: given

a particular s–cardinality subset S of indices from 1 to nT , we want to evaluate dot

products of (normalized) columns of ΦΨ. Let us call the sensing matrix with normalized

columns A. Restricting this to the columns specified by S reduces us to AS. Note that

[
ATSAS − I

]
ij

=
[
ATA− I

]
SiSj

= Mµν (βγ)− 1Si=Sj
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where we calculate the µ, ν, β, γ arguments for the M by the appropriate column number:

µSi = floor(Si/n) and βSi = Si mod n. Call MµSi µ
S
j

(
βSi β

S
j

)
as ωSij. This is symmetric in

the arguments i and j.

We now want to calculate row absolute sums for the matrix ATSAS − I. Since by

definition Mµµ(ββ) = 1, ∑
j

|ωSij − 1Si=Sj | =
∑
j 6=i

|ωSij|

Finally, using the square soft-max function, we get the maximum row absolute sum,

the Gershgorin radius and our objective function C to be

C (Φ) =
1

θ
log

[∑
S

∑
i

exp {θ
∑
j 6=i

|ωSij|}

]

Derivatives of this quantity are calculated in a similar way to the coherence function

derivatives.

Brauer ellipse bounds

A similar bound to the Gershgorin bound is the Brauer ellipse bound, which bounds the

eigenvalue in an ellipse around diagonal elements, instead of circles. This is provably bet-

ter than the Gershgorin bound, and so can be used to get a tighter bound on the coherence.

However, these optimizations are combinatorial in the size of the matrices involved

and the sparsity one needs to optimize for. These are presented here only as attempts to

see if they are feasible. It turns out they aren’t.
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Chapter 5

Optimizing General Sensing

Matrices

C
ompressed

5.1 An l1-based error criterion

5.2 An l∞-based error criterion

5.3 Measures of sparsity
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Chapter 6

Experiments and Results

W
e now present results from the proposed framework for reconstruction and opti-

mization of sensing matrices. We first show that our reconstruction framework

performs well on real, sparse images in a variety of situations, and then move on to how

our optimization procedure helps improve this performance.

6.1 Validating our framework

We start with testing the proposed framework visually. In all such results in this paper, we

show successive frames top-to-bottom, and different types of reconstruction left-to-right.

Here, for the sake of saving time, all reconstructions are done in a non-overlapping way.

We first use two synthetic images that are known to have very low sparsity. These are

20× 20 images, with only 3 out of the 400 DCT coefficients set to non-zero values. The

results, with relative root mean errors of the order of 10−5, for these are shown in Fig. 6.1.

The results are similar for Gaussian sensing matrices and positive random matrices.

Next, we test on two video frames that are very similar, with Gaussian random

matrices. The relative root mean square errors are around 0.0019 for each image. The

results are shown in Fig. 6.2.

Next, with positive random diagonal matrices, the relative root mean square errors

are around 0.0036 for each image. The results are shown in Fig. 6.3. Looking at these

results, one notices that there is very little to no ghosting, that is, appearance of features

from one image into the other, in the output images even when the images are very close

to each other. This is a very desirable property in any algorithm that separates images
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Figure 6.1: Synthetic image results. Left: input images, Right: reconstructions

Figure 6.2: Real images, Gaussian matrices. Left: input images, right: reconstructions

from compressed video.

To evaluate how this works for multiple images, we try separating three images with

uniform matrices. See Fig. 6.4. Here, we notice ghosting happening in the third frame.

However, with better-designed sensing matrices, one can think of getting rid of this effect.

The relative root mean square errors here are worse, around 0.005 for each image.

To simulate sudden changes, we run the optimization with two very different input

images. We can separate these well, as is shown in Fig. 6.5.

We do a numerical comparison between our designed codes and random codes for

various values of s = ‖x‖0/n and T . We randomly generate T s-sparse (in 2D DCT) 8×8

signals {xi}Ti=1, combine them using random matrices to get y. Average relative root mean
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Figure 6.3: Real images, uniform matrices. Left: input images, right: reconstructions

Figure 6.4: Separating three images, uniform matrices. Up: input images,

down: reconstructions

square errors on recovering the input signals from y as a function of s and T are shown

in Figs. 6.6 and 6.13. Errors are near-zero in the region where both T and s are small,

and one can expect reasonable quality reconstructions till T = 4 from random matrices.

To increase T further, we would need to optimize our sensing matrix appropriately, as is

shown further in this paper.

30



Figure 6.5: Sudden change, uniform matrices. Left: input images, right: reconstructions

Figure 6.6: Average relative root mean square errors in our scheme as a function of s

and T with positive random matrices

6.2 Demosaicing

To demonstrate the utility of this scheme, we show results on demosaicing RGB images.

The general demosaicing problem involves addressing the difficulty that on a camera sen-

sor, a single pixel can sense only one of the three R, G and B channels. Therefore, raw

camera data needs to be interpolated to recover all the three channels. Traditional ap-

proaches to demosaicing involve the use of the Bayer pattern, which tiles a fixed [B, G; G,

R] pattern over the image and use variants of algorithms like edge-directed interpolation
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which are tuned to the Bayer pattern. The Matlab demosaic function, for instance, uses

[11], which takes a gradient-corrected bilinear interpolated approach. However, recently

a case has been made for panchromatic demosaicing [8], where we sense a linear combina-

tion of the three channels and use techniques from compressive recovery to reconstruct.

However, it turns out that the Bayer pattern has very high mutual coherence, so it is

unsuitable for compressive recovery. Here, we propose to design the mosaic patterns by

minimizing coherence.

We design 8 × 8 codes for linearly combining the three channels using our method

and visually compare overlapping reconstructions. As Figs. 6.7 and 6.8 show, results from

Figure 6.7: Demosaicing. Left: inputs, middle, right: reconstructions with {random,

non-circularly designed} matrices

the designed case are more faithful to the ground-truth than the random reconstructions

are. The random reconstructions show (more) color artifacts, especially in areas where

the input image varies a lot (car headlights in the top image, around parrot eyes in the

bottom). Our designed codes do not show as many color artifacts. The relative root mean

square errors don’t differ much for these two cases, but subtle details of color are better

preserved by our matrices. In Fig. 6.8, notice in the first case the green artifacts near car

headlights and the leftmost cyclist in the random reconstruction that is, while that ares

is better-reconstructed with our matrices. The car headlight area on the car at the right

is also better-reconstructed by our matrices. In the bottom, notice less color artifacts in

the densely-varying area near the eye and on the bottom part of the beak.
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Figure 6.8: Demosaicing close-ups, examples {1, 2, 3}. Clockwise: inputs,

reconstructions with {random, {circularly, non-circularly} designed} matrices

6.3 Coherence minimization

The coherence of a uniform random matrix of the type we’re interested in has a typical

value around 0.8 for 8× 8 codes. The distribution of these values is shown in the boxplot

in Fig 6.9. The typical profile of descent on coherence from a random initialization is

shown in Fig. 6.10.

The minimum coherence we have been able to achieve in this scheme has been around
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Figure 6.9: Distribution of coherences for 8× 8 random positive codes as a function of T

Figure 6.10: Typical coherence decrease profile

0.27 (for T = 2). It is interesting to note that all initialization instances lead to coherences

(for T = 2) of at the most 0.35, and hence empirically yield nearly as good matrices.

We first visually validate that our matrices perform better than positive random

matrices. We design 8×8 codes and tile them, reconstructing patchwise with overlapping

patches. An example of this running on six not necessarily close frames in a video is

shown in Fig. 6.11 (Fig. 6.12 shows an example for T = 2). Ghosting artifacts marked

out in Fig. 6.11 in white boxes in the random matrix reconstructions are absent or lower

in the designed matrix reconstructions. These outputs show that on the large scale, we do

as well as random matrices for low T and better for high T . For a small scale comparison,

see Figs. 6.16 and 6.17.
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Figure 6.11: Optimized output from combining six not necessarily close images. Left:

inputs, middle, right: reconstructions with {random, non-circularly optimized} matrices
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Figure 6.12: Optimized output from combining two close images. Left: inputs, middle,

right: reconstructions with {random, non-circularly optimized} matrices

Finally, we do a numerical comparison similar to the one in Fig. 6.6. The resulting

error map is shown in Fig. 6.13. On an average, we see that we perform better than

the random case (note the colorbar scale changes). To characterize this, we compute the

difference between these two error maps (random minus optimized). The differences add

up to a positive quantity (4.5119 in this case), and thus on an average, here, we’re better

by an relative root mean square factor of 0.018. This is not very significant, though it

does produce significant changes in subtle texture as seen in Figs. 6.16 and 6.17.

Figure 6.13: Error map for optimized codes as a function of s and T
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Figure 6.14: Left to right: Circularly-shifted coherence histograms for {random,

non-circularly optimized, circularly optimized} matrices

6.3.1 Circularly-symmetric coherence minimization

Again, we design 8×8 codes for T = 2. To show coherence improvement between positive

random codes, and codes designed with and without circular permutations, we plot the

distribution of coherences of Φ(ζ)D in Fig. 6.14 for all circular permutations ζ. Note

that even though the coherences of non-circularly designed matrices are much lower than

positive random matrices, the maximum coherence among all permutations is quite large.

The circularly-designed matrices, however, have permuted coherences clustered around a

low value. We then expect good reconstruction with all circular permutations, yielding

good expected reconstructions for images.

Similar to the above section, we validate our matrices visually. Following the same

conventions, here is an output for the T = 2 case [Fig. 6.15].

Figure 6.15: Circularly optimized output from combining two close images. Left to

right: reconstructions with {random, circularly optimized} matrices
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We now look at reconstructions from random and both classes of our designed ma-

trices on a small scale. As a first example, we show a close-up from the car video sequence

shown earlier [Fig. 6.16]. Note, to start off, that the reconstruction of the numberplate and

headlight area is much clearer in our case than the random matrix case. Further, notice

the presence of major ghosting in the random case, especially near the rear-view mirrors,

bonnet (marked by arrows) and headlights (marked by boxes), while our reconstructions

remain free of these artifacts. Adding circular optimization to the picture further im-

proves image quality especially in the bonnet area, where the non-circular reconstruction

is slightly splotchy. Next, in Fig. 6.17, which is a smaller part of the same image, the

superiority of our reconstruction is clearer, with the circular optimization smoothing out

blotchier parts of the bonnet.

Figure 6.16: Close-ups showing subtle texture preservation with optimized matrices,

example 1. Left to right: inputs, reconstructions with {random, non-circularly

optimized, circularly optimized} matrices
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Figure 6.17: Close-ups showing subtle texture preservation with optimized matrices,

example 2. Left to right: inputs, reconstructions with {random, non-circularly

optimized, circularly optimized} matrices





Chapter 7

Conclusion and Future Work

I
n the purview of this report, we dealt with problems arising in physically interesting

compressed sensing situations: the positivity of sensing matrices and difficulty in

obtaining compressive measurements across space and time. We then tried to optimize,

within and without this framework, sensing matrices for accurate recovery.

7.1 Take-aways

We cast the video compressed sensing problem as one of separation of coded linear com-

binations of signals sparse in a given basis. We evaluated this scheme and found it works

well for low sparsity levels, and yields reasonably visually good reconstructions. How-

ever, especially at high T , we found that random matrices aren’t good enough; we need

something more.

We then provided an analytical expression for the coherence of the sensing matrix

in the coded source separation scheme and optimized for coherence using these. Results

showed better quality and less ghosting visually, and less error numerically. However as

image size increased, the optimization problem became rapidly intractable, so we settled

for optimizing small masks such that they have small coherence in all circular permu-

tations, so they can be tiled for overlapping patchwise reconstruction. We attempted

optimizing some tighter lower bounds arising in the derivation of the coherence bound,

but these optimizations turned out to be infeasible.

We then moved on to optimizing general sensing matrices with reconstruction error

metrics other than the l2 norm and sparsity measures other than the l0 norm. Results
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from preliminary testing of these were encouraging.

7.2 Future work

The immediate road ahead leads to finding methods (algorithms) better than finite differ-

encing to optimize general sensing matrices. Rigorous testing on synthetic data and real

images will be done to validate the hypothesis that this optimization method is better

than the state of the art.

The long-term goal is to explore how changing the definition of sparsity and bend-

ing it to follow the four basic axioms seen before affects reconstruction error guarantees.

It remains to be seen if such a scheme produces quantities amenable to evaluation and

optimization in polynomial time. The ultimate goal is to apply this to the general com-

pressed sensing scenario and achieve better results than the state of the art on real image

performance.

Most code used in generating results and optimizing sensing matrices in this re-

port lives in the Bitbucket repository at alankarkotwal/coded-sourcesep [10]. Gra-

dient descent lives in the src/descent folder, circularly-symmetric gradient descent in

src/descent-circular and reconstruction code in src/circular.
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Appendix A

Derivation of coherence expressions

Recalling our definitions, we call the index varying from 1 to T as µ or ν, and the index

varying from 1 to n as α, β or γ. The µth block of Φ is thus φµ. Let the βth diagonal

element of φµ be φµβ. Define the αth column of DT to be dα. Thus, the Gram matrix

M̃ = ΨTΦTΦΨ has the block structure

M̃µν = DTφTµφνD

= DTφµφνD

=
(
d1 d2 . . . dn

)

φµ1φν1 0 . . . 0

0 φµ2φν2 . . . 0
...

...
. . .

...

0 0 . . . φµnφνn




dT1

dT2
...

dTn



=
(
d1 d2 . . . dn

)

φµ1φν1d

T
1

φµ2φν2d
T
2

...

φµnφνnd
T
n


=

n∑
α=1

φµαφναdαd
T
α

The βγth element of M̃µν , thus, is

M̃µν(βγ) =
n∑

α=1

φµαφναdα(β)dα(γ) (A.1)

Now we need to normalize the columns of ΦΨ. Squared column norms are diagonal

elements of M̃µν . So the product of the squared norms of the βth column of the µth block
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and the γth column of the νth block is (call this ξ2
µν(βγ))

ξ2
µν(βγ) =

(
n∑

α=1

φ2
µαd

2
α(β)

)(
n∑
τ=1

φ2
ντd

2
τ (γ)

)
(A.2)

Let the normalized Gram matrix be M . Thus, following the same conventions as above

(define the numerator of the expression to be χµν(βγ)),

Mµν(βγ) =

∑n
α=1 φµαφναdα(β)dα(γ)√(∑n

α=1 φ
2
µαd

2
α(β)

)
(
∑n

τ=1 φ
2
ντd

2
τ (γ))

=
χµν(βγ)

ξµν(βγ)
(A.3)

Finally, using the square soft-max function to deal with the max in the coherence expres-

sion, we get the squared soft coherence C to be

C =
1

θ
log

[
T∑
µ=1

µ−1∑
ν=1

n∑
β=1

n∑
γ=1

eθM
2
µν(βγ) +

T∑
µ=1

n∑
β=1

β−1∑
γ=1

eθM
2
µµ(βγ)

]
(A.4)

In the above, the first term corresponds to all (µ > ν) blocks that are ‘below’ the block

diagonal. Here, we consider all terms in the given block for the maximum. The second

term corresponds to (µ = ν) blocks on the block diagonal. Here, we consider only consider

(β > γ) below-diagonal elements for the maximum.
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Appendix B

Derivation of coherence derivatives

Differentiating the expression for the squared soft coherence above, we get

dC(Φ)

dφδε
=

1

θeθC(Φ)

[
T∑
µ=1

µ−1∑
ν=1

n∑
β=1

n∑
γ=1

2θeθM
2
µν(βγ)Mµν(βγ)

dMµν(βγ)

dφδε

+
T∑
µ=1

n∑
β=1

β−1∑
γ=1

2θeθM
2
µµ(βγ)Mµµ(βγ)

θMµµ(βγ)

dφδε

] (B.1)

Next, we calculate the derivatives in the above equation, dMµν(βγ)/dφδε. Define the nu-

merator of the expression for Mµν(βγ) as χµν(βγ), and thus, Mµν(βγ) = χµν(βγ)/ξµν(βγ).

Clearly,

dMµν(βγ)

dφδε
=
ξµν(βγ)dχµν(βγ)

dφδε
− χµν(βγ)dξµν(βγ)

dφδε

ξµν(βγ)2
(B.2)

Next,

dχµν(βγ)

dφδε
=

d

dφδε

n∑
α=1

φµαφναdα(β)dα(γ)

=
n∑

α=1

dα(β)dα(γ)
d

dφδε
(φµαφνα)

Notice that a term in the above summation can be non-zero only if α = ε. Thus,

dχµν(βγ)

dφδε
= dε(β)dε(γ)

d

dφδε
(φµεφνε)

= dε(β)dε(γ)

(
φµε

dφνε
dφδε

+
dφµε
dφδε

φνε

)
Now, notice that dφµε/dφδε is non-zero only if µ = ε. Denote by ↑µε the Kronecker delta

function, which is 1 only if µ = ε, 0 otherwise. Then,

dχµν(βγ)

dφδε
= dε(β)dε(γ) (φµε ↑νδ + ↑µδ φνε) (B.3)
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Next,

dξµν(βγ)

dφδε
=

d

dφδε

√√√√( n∑
α=1

φ2
µαd

2
α(β)

)(
n∑
τ=1

φ2
ντd

2
τ (γ)

)

=
1

2ξµν(βγ)

d

dφδε

(
n∑

α=1

φ2
µαd

2
α(β)

n∑
τ=1

φ2
ντd

2
τ (γ)

)

=
1

2ξµν(βγ)

[
n∑

α=1

φ2
µαd

2
α(β)

d

dφδε

(
n∑
τ=1

φ2
ντd

2
τ (γ)

)

+
n∑
τ=1

φ2
ντd

2
τ (γ)

d

dφδε

(
n∑

α=1

φ2
µαd

2
α(β)

)]

Again, a term in one of the above summations is non-zero only if α or τ is the same as ε.

Thus,

d

dφδε

(
n∑

α=1

φ2
µαd

2
α(β)

)
= 2φµεd

2
ε(β) ↑µδ

Thus,

dξµν(βγ)

dφδε
=

1

ξµν(βγ)

[
φµεd

2
ε(β) ↑µδ

n∑
τ=1

φ2
ντd

2
τ (γ) + φνεd

2
ε(γ) ↑νδ

n∑
α=1

φ2
µαd

2
α(β)

]
(B.4)

This completes the calculation of derivatives.
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